Applied Machine Learning Bootcamp
Timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
-
October 22, 2021Client Discovery Session 1
-
October 26, 2021Client Demo Session 2
-
October 29, 2021Client Discovery Session 2
-
November 19, 2021Client Demo Session 1
-
December 11, 2021Experience end
Timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
Meeting between the student and company to confirm: project scope, problem definition, data set, and important dates held the week of June 14, 2021.
-
October 22, 2021Client Discovery Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
October 26, 2021Client Demo Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
October 29, 2021Client Discovery Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
November 19, 2021Client Demo Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
December 10, 2021Final Client Demo Session
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss the project deliverables.
-
December 11, 2021Experience end
Categories
Data analysisSkills
machine learning data mining and analysis supervised and unsupervised learning algorithmsStudents from the SAIT's Applied Machine Learning Bootcamp and our Applied Product Management Bootcamp participate in a 78 hour interdisciplinary machine learning capstone project. This project culminates in the development of a machine learning model that predicts, detects, or forecasts an entity. The data for the use case could be images (computer vision), text (natural language processing), time series (multi-variate or univariate), or tablular data. The data format would be a folder of images or comma-separated values (CSVs) for text, time series, or tablular data. The client will need to:
1) Provide a clearly defined machine learning problem.
2) Explain how the client intends to use the solution.
3) Explain why this problem needs to be solved.
4) Provide a subject matter expert that can be a touch point for the student and answer questions related to the data and use case.
Students will produce a proof of concept, predictive machine learning model (i.e. a minimally viable product) that solves a client problem.
Project timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
-
October 22, 2021Client Discovery Session 1
-
October 26, 2021Client Demo Session 2
-
October 29, 2021Client Discovery Session 2
-
November 19, 2021Client Demo Session 1
-
December 11, 2021Experience end
Timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
Meeting between the student and company to confirm: project scope, problem definition, data set, and important dates held the week of June 14, 2021.
-
October 22, 2021Client Discovery Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
October 26, 2021Client Demo Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
October 29, 2021Client Discovery Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
November 19, 2021Client Demo Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
December 10, 2021Final Client Demo Session
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss the project deliverables.
-
December 11, 2021Experience end
Project Examples
Examples of student-developed predictive machine learning models:
- Electricity consumption predictions or electricity load forecasting.
- Facial recognition.
- Solar power generation prediction.
- Oil production prediction.
- Carbon emission prediction.
- Heart attack prediction.
- Credit fraud detection.
- Predicting customers who are a potential flight risk (customer churn).
- Using MRI images to detect and predict patients who may have brain tumor.
- Using chest ray images of patients to predict patients who are at risk of getting covid.
Companies must answer the following questions to submit a match request to this experience:
Provide a dedicated contact who is available to answer periodic emails or phone calls over the duration of the project to address students' questions.
Attend client meetings on the evenings of Oct 21st, Oct 28th, Nov 18th , Nov 25th and Dec 9th.
Timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
-
October 22, 2021Client Discovery Session 1
-
October 26, 2021Client Demo Session 2
-
October 29, 2021Client Discovery Session 2
-
November 19, 2021Client Demo Session 1
-
December 11, 2021Experience end
Timeline
-
October 18, 2021Experience start
-
June 15, 2021Project Scope Meeting
Meeting between the student and company to confirm: project scope, problem definition, data set, and important dates held the week of June 14, 2021.
-
October 22, 2021Client Discovery Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
October 26, 2021Client Demo Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
October 29, 2021Client Discovery Session 2
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to scope the project and discuss its requirements.
-
November 19, 2021Client Demo Session 1
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss a demo as part of an iterative design and development process.
-
December 10, 2021Final Client Demo Session
Meet with an interdisciplinary project team consisting of product manager students and machine learning students to review and discuss the project deliverables.
-
December 11, 2021Experience end